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Abstract
In recent years, many works have proposed solutions for indoor localization inWireless Sensor Networks (WSN). The challenge
in these different works is above all to improve localization accuracy. New trends in the field are the use of optimization
techniques to improve the accuracy in determining the location of a sensor. Thus, this study aims to propose a new contribution
to the indoor localization problem inWSN based on optimization techniques. The designed approach improves the performance
of particle swarm optimization (PSO). In this improved version of PSO, on the one hand, a form of tabu search is used by each
particle to determine its best local neighbor in order to accelerate its possibilities of convergence towards a better solution. On the
other hand, limit and performance checks are introduced into the PSO algorithm to evolve only with better particles belonging to
the search space constructed by constraint analysis, around an initial solution obtained by trilateration. This proposed approach
called FPSOTS uses the received signal strength indicator (RSSI) method to evaluate inter-sensor distances. Localization
accuracy and convergence performances of the FPSOTS approach were evaluated in simulation and compared with other recent
localization approaches based on optimization techniques. Results show that FPSOTS succeeds in locating unknown nodes of a
WSN with fast convergence and better accuracy than recent state-of-the-art approaches such as HPSOVNS, NS-IPSO, ECS-NL
and GTOA. Indeed, in comparison with these four approaches, the accuracy of FPSOTS approach was better by 40%, 35%, 44%
and 22% respectively.
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1 Introduction

The current generation of WSN allows the construction of
applications requiring real-time localization of the active
agents of the system, such as applications for monitoring
and detecting suspicious or critical events like enemy

intrusions, earthquakes, bushfires, etc. The most commonly
used positioning system is GPS (Global Positioning
System). However, equipping all the sensors with a GPS con-
siderably increases the cost of network deployment, without
forgetting the increase in the energy consumption of sensors
due to the use of GPS [1, 2]. In addition, GPS signals are
greatly affected by security issues and are sometimes poorly
received inside buildings and dense environments such as
forests [3, 4]. Therefore, it might be necessary to equip
only some sensors with GPS (called anchors) and estimate
the locations of all other sensors without GPS (called
unknown or blind sensors) through an indoor localization
technique.

In general, indoor localization consists in accurately esti-
mating the positions of unknown sensors using certain data
received from anchors. The estimated positions must be as
close as possible to the real positions of unknown sensors. In
indoor localization, anchors can be fixed or mobile, and can
know their position by a GPS or by a manual configuration
during their deployment [5]. However, the use of fixed an-
chors can lead to high-cost problems due to the need for
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numerous fixed anchors for the best environmental coverage.
On the other hand, one or a few mobile anchors can be de-
ployed in the network, to move around and broadcast infor-
mation on their position that the unknown sensors will collect
to locate themselves. Usually, in a double dimension (2D),
sensors wishing to calculate their location need at least three
non-collinear anchor position points.

Indoor localization methods are generally classified into
two groups: range-based [6–9] and range-free [10–13].
Range-based localization methods are generally more precise
than range-free [14]. Range-based localization methods esti-
mate distances and/or angles between sensors and anchors,
using anchor positions. These distances or angles can be ob-
tained using a measurement technique such as Angle of
Arrival (AoA), Time of Arrival (ToA), Two Way Ranging
(TWR), Time Difference of Arrival (TDoA), Received
Signal Strength Indicator (RSSI) [2, 4, 15, 16].

From distances and/or angles, we can estimate a sensor
position using a geometric technique such as trilateration, tri-
angulation and multilateration [1, 2, 15]. In range-based local-
ization, the RSSI technique is most often used to estimate
distances between nodes. This is because several wireless de-
vices integrate a unit allowing them tomeasure received signal
intensity, and therefore there is no need for additional equip-
ment. However, RSSI measurement may have errors in the
estimated distances due to noise in the environment, which
adversely affects received signals. Methods such as
trilateration, triangulation or multilateration are very sensitive
to these errors and can lead to very erroneous results. This
causes position estimations with poor precision, increasing
error between the estimated position and the actual position
of an unknown sensor.

In recent years, several works have focused on using opti-
mization methods to increase the accuracy of estimating the
location of an unknown sensor [10, 12, 17–25]. These works
use for example: particle swarm optimization (PSO) in tradi-
tional or improved version [17, 21, 23, 26]; forms of PSO
hybridization with variable neighborhood search [18] or sim-
ulated annealing [20]; cuckoo search [25]; group teaching
optimization [22]; etc. Thus, the localization problem can be
formulated as an optimization problem and be solved using
heuristics or meta-heuristics.

In the literature, we observe that PSO is widely used in the
field of indoor localization because of its rapid convergence,
its ease of implementation and its good performance in terms
of localization accuracy [17]. Indeed, PSO can accurately es-
timate the location of unknown sensors in a short time [21].

In this study, we are also interested in using PSO to esti-
mate the location of unknown sensors in a WSN using mobile
anchor data. An initial solution is determined by trilateration.
We improve the PSO method to estimate positions with good
accuracy and as close as possible to real positions, despite the
noise in the environment. More precisely:

& We use a simple method based on constraints analysis to
define an area that can contain the position of unknown
sensor, also serving as a search space for the optimization
process;

& In the iterative process of PSO, we give each particle the
ability to search for the best local neighbor around its
current position by a form of tabu search, to increase and
accelerate its possibilities of convergence towards a better
solution;

& Next, we introduce in the iterative process of PSO a limit
check to verify that the new particle positions belong to
the elaborated search space. A new particle position, out-
side the search space and less efficient than the current
position is adjusted to be brought back into the search
space. But, the one outside the search space and better
than the current position is maintained and validated.

& Finally, we introduce in the iterative process of PSO a
performance check to evolve only with the new solutions
better than the current ones.

This improved version of PSO, we called it FPSOTS. After
evaluating the performance of FPSOTS against those of other
optimization-based indoor localization techniques, we show
that FPSOTS allows to quickly obtain, with good convergence
and precision, an optimal solution to the location of unknown
sensors. To our knowledge, this study is the first to use any
hybridization of PSO with tabu search to improve indoor lo-
calization performance in WSN.

The rest of this paper is organized into 4 sections. Section 2
discusses our motivations and the PSO-based localization
technique. Section 3 presents previous works on localization
methods based on RSSI distances and optimization tech-
niques. In Section 4, we describe the functioning of our local-
ization model named FPSOTS i.e. calculation of the initial
solution, elaboration of the search space and improvement of
PSO. Simulations were performed, and the results are present-
ed in Section 5. This paper ends with a conclusion in
Section 6.

2 PSO localization and motivations

PSO is a computational algorithm that finds its source in ob-
servations made during computer simulations of grouped
flights of birds and shoals of fish [27]. It uses a population
of particles to represent candidate solutions in a search space,
and iteratively optimizes the problem to move these particles
to the best solutions with respect to a given quality measure
called an objective function.

In PSO algorithm, the behavior of the swarm is described
in terms of a particle. At any time, each particle p in position
x pð Þ, is considered as a solution of the problem. The particle
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must move to explore more solutions. Its displacement de-
pends on:

& Its current speed v pð Þ: influenced by an inertia component
ci, which represents the confidence of the particle in its
current trajectory. Particle instinctively tries to take its
course of movement.

& Its best-visited solutionPbest pð Þ: influenced by a cognitive
component cc, which allows the particle to move towards
its best-encountered position until the current instant.

& The best particle of the whole swarm Sbest: influenced by a
social component cs, allowing the particle to be inspired
by the experience of other particles, to move towards the
best position encountered by its neighbors.

The best position Pbest corresponds each time to the best
position already obtained by the particle among all the posi-
tions it has visited. The next particle position (at the iteration
t þ 1 ) is calculated using Eqs. 1, 2 and 3.

vtþ1 pð Þ ¼ ci*vt pð Þ þ cc* Pbesttð ðpÞ � xtðpÞÞ
þ cs*ðSbestt � xtðpÞÞ ð1Þ

xtþ1 pð Þ ¼ vtþ1 pð Þ þ xt pð Þ ð2Þ
Sbestt ¼ argmin fð ðxt qð ÞÞ; q 2 VðpÞÞ ð3Þ

Where t denotes the current iteration;V pð Þdenotes all other
particles of the swarm; f xtð ðqÞÞ is the fitness function used to
evaluate a particle position.

In Algorithm 1, we note the following points in PSO
method:

1. The local component of a particle (Pbest ) is the best
position visited by the particle: in the PSO method, a

particle evolves according to its best local performance.
This best local performance is simply its best-visited po-
sition at the current time. We wondered about the result
that the algorithm would have produced if the local com-
ponent were obtained by searching around the current
position of the particle, using for example a trajectory
meta-heuristic. Indeed, the works proposing a hybridiza-
tion of PSO [18, 20] do this hybridization on the global
component (Sbest ). They search by another optimization
technique for a result to the problem and compare it with
the current result provided by PSO to retain the best of the
two as the current solution. We think that performance of
PSO could be improved if the hybridization was done on
the local component (Pbest ).

2. PSO has no limit check: all new particle positions are
accepted, even those that are not part of the search space.
Performance can be improved by rejecting positions out-
side the search space that do not improve the overall per-
formance of the algorithm, or by bringing these positions
back into the search space.

3. PSO accepts less efficient solutions: all new particle po-
sitions, even those less efficient than the current positions
are accepted. This behavior can cause a particle to be less
good in the next iterations than in past iterations. This can
impact the performance of the algorithm. It is possible to
control the new positions calculated by a particle to retain
only those which make it possible to improve the perfor-
mance of said particle.

In our FPSOTS proposal, we improve the PSO algorithm to
integrate behaviors described by these three points. We use as
a trajectory meta-heuristic a form of tabu search, to obtain the
componentPbest which we now baptize as best local neighbor
of a particle instead of “best-visited position”.

Tabu search is a meta-heuristic developed by Glover in
1986 [26]. Our choice of tabu search comes from the fact that
it overcomes the problem of local optima during a search
process by using a tabu list. Tabu list is a short-term memory
that stores previously visited solutions to avoid rollbacks and
moves that do not improve the current solution. But it is pos-
sible to violate a ban when a prohibited movement achieves
the best solution recorded so far. Another point justifying the
choice of tabu search is that to the best of our knowledge, no
form of hybridization of PSO with tabu search has yet been
proposed in the literature.

3 Previous works on optimization-based
localization

In the category of localization approaches using population
meta-heuristics, one of the most used optimization techniques
is PSO proposed in [17]. They are the first to use PSO for
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localization inWSN. In their study, they compared the perfor-
mance of PSO algorithm with that of the simulated annealing
algorithm for localization. Results showed that PSO is more
efficient than simulated annealing for locating a sensor.

Based on swarm intelligence applications to locate a mov-
ing sensor, [23] proposed a concept of projecting virtual an-
chor nodes using RSSI as a measurement technique. They
separately implemented H-Best Particle Swarm Optimization
(HPSO), Biogeography Based Optimization (BBO) and
Firefly (FA) algorithms using a single mobile anchor in the
network. Their study showed that HPSO algorithm provided
better performance than BBO and FA algorithms.

A localization approach named HPSOVNS is implemented
in [18] based on PSO and variable neighborhood search
(VNS). At each iteration of PSO algorithm, a solution is
sought by VNS technique. If the solution obtained by VNS
is better than that provided by PSO then this solution is con-
sidered as the best overall solution(Sbest ) of PSO for the next
iteration.

Authors of [28] in their study to determine node location
with high accuracy by swarm intelligence algorithms, presented
a localization algorithm named LMQPDV-hop. In LMQPDV-
hop, an improved DV-Hop was used as an underground mech-
anism to collect estimated distances between nodes.
Subsequently, a Quantum Particle Swarm Optimization
(QPSO) algorithm, named LMQPSO, was developed to find
the best coordinates of unknown nodes. The results of conduct-
ed simulations show that the algorithm can effectively improve
position accuracy. However, sensors are not self-locating. They
just collect information necessary for their location and send
them to the base station, which is responsible for calculating the
position of each sensor.

To address the challenges of low sampling efficiency and
particle depletion in Monte Carlo positioning algorithms, the
authors of [10] introduce a chronological Monte Carlo local-
ization algorithm based on PSO ( TSMCL-BPSO). First, the
sampling region is constructed based on the overlap of the
initial sampling region and the Monte Carlo sampling region.
Then, a PSO strategy is adopted to search for the optimal
position of the target node. But this algorithm uses very com-
plex and expensive calculation methods for sensors with low
resources. In addition, the algorithm is designed to work with
fixed anchors, which limits its use in a hostile or difficult-to-
access area where fixing anchors can be very risky.

In [21], a localization technique based on node segmenta-
tion with PSO improvement (NS-IPSO) is proposed. This
method divides sensors into segments to improve the accuracy
of the estimated distances between pairs of anchors and un-
known sensors. They determined candidate sensors that could
potentially be used to segment anchors in an area, based on
certain specified conditions. To further improve the accuracy
of location, the fitness function is improved to take into ac-
count the number of jumps between each anchor and

unknown sensors. Their improved version of PSO only con-
sidered particles that do not change position in order to pos-
sibly reduce the risk of trapping in a local optimal.

Moreover, recent works use other forms of optimization to
locate sensors in a WSN. For example, the works in [25]
provide a cuckoo search enhancement for node localization
called Enhanced Cuckoo Search (ECS-NL), to minimize the
average localization error and time required to locate an un-
known sensor. In this algorithm, the authors introduced an
early stop mechanism to improve the search process by break-
ing out of the search loop whenever the optimal solution is
reached.

Authors of [22] designed a group teaching optimization
algorithm for node localization named GTOA-NL based on
a meta-heuristic for WSN. The goal of GTOA-NL is to deter-
mine the position of unknown sensors using anchors with
minimum localization error and maximum localization accu-
racy. A set of simulations was carried out, and the results
obtained ensured the performances of GTOA-NLmodel com-
pared to other methods under a varying number of anchors,
telemetry error and transmission ranges.

In our study, we propose a contribution to indoor localiza-
tion problem in WSN using meta-heuristics. We propose a
new localization approach based on an improved version of
PSO named FPSOTS according to our motivations presented
in Section 2. This improved version introduces in PSO meth-
od a limit and performance check in the evolution of particles,
while allowing them to find their best local solution using a
form of tabu search. During this tabu search, each particle will
have the possibility to explore a better solution in order to
modify its performance and quickly improve the overall per-
formance of PSO. FPSOTS only considers new particle posi-
tions that improve the performance of the algorithm. The prin-
ciple of the FPSOTS method is detailed in the rest of this
work. Performances of FPSOTS are compared to
HPSOVNS, NS-IPSO, ECS-NL and GTOA-NL using the pa-
rameters of anchor density, standard deviation of signals due
to noise and transmission range.

4 FPSOTS-based localization

4.1 FPSOTS Methodology

In our WSN, the process of FPSOTS localization method is
described in the following steps.

1. Diffusion: anchors equipped with GPS move and period-
ically broadcast their coordinates in the environment.

2. Collect: the other sensors, initially fixed, receive these
coordinates when they are in the transmission range of
an anchor. Sensors must collect three non-collinear
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coordinates to be able to start their localization process,
since we are in 2D.

3. Calculation of distances: each time a sensor receives a
signal from an anchor, it estimates by RSSI the distance
di separating it from the anchor i. This distance can be
expressed by Eq. 4.

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxc � xiÞ2 þ ðyc � yiÞ2

q
ð4Þ

ðxc; ycÞ is the position of sensor C and ðxi; yiÞ is the
position of anchor i.

In real cases, the measured distance may be corrupted by
noise [23]. A sensor can define the distance between an anchor
i and itself using formula 5.

Di ¼ di þ ni ð5Þ
di is the estimated distance between anchor i and sensor. ni is
the Gaussian variable with zero mean and noise variance σ,
which affects the evaluated distance di. σ represents the stan-
dard deviation caused by noise over the distances evaluated.
4. Find three non-collinear positions: each time the sensor

receives an anchor signal and evaluates the distance be-
tween the anchor and it, it checks to see if it has already at
least three non-collinear positions. If that is the case, he
goes to the next step. Otherwise, he remains open to new
positions.

5. Initial solution by trilateration: when a sensor collects
three non-collinear positions, it calculates S0 , the initial
solution to its location by trilateration according to Eq. 7.

6. Search space: then it delimits a search space from its final
localization using Eq. 12.

7. Auto-localization: it searches by the FPSOTS method of
algorithm 3 for its final location.

8. Displacement: finally, the located sensors move and peri-
odically broadcast their current positions to accelerate the
localization process of other sensors.

The overall architecture of FPSOTS is summarized in
Fig. 1.

4.2 Initial solution

Suppose a sensor Cðxc; ycÞ at a given position and obtaining
the different points A1ðxa1; ya1Þ;A2ðxa2; ya2Þ and A3ðxa3; ya3Þ
broadcast by anchors. Upon receipt of each signal, the sensor
calculates by RSSI the distance separating it from the trans-
mitting anchor. By trilateration, the sought position of sensor
C is the intersection point of the three circles, each having a
reference point as its center and the estimated distance be-
tween this point and the sensor as its radius (Fig. 2).

The coordinates ðxc; ycÞof sensorC are obtained by solving
system 6.

ðxc � xa1Þ2 þ ðyc � ya1Þ2 ¼ d21
ðxc � xa2Þ2 þ ðyc � ya2Þ2 ¼ d22
ðxc � xa3Þ2 þ ðyc � ya3Þ2 ¼ d23

8<
: ð6Þ

Initial sensor localization named S0ðx0; y0Þ is defined by
Eq. 7.

x0 ¼ xc ¼ �x2a1�y2a1þx2a2þy2a2�2y0ðya2�ya1Þþd21�d22
2ðxa2�xa1Þ

y0 ¼ yc ¼ ðxa2�xa1Þð�x2a1�y2a1þx2a3þy2a3þd21�d23Þ�ðxa3�xa1Þð�x2a1�y2a1þx2a2þy2a2þd21�d22Þ
2ððxa2�xa1Þðya3�ya1Þ�ðxa3�xa1Þðya2�ya1ÞÞ

8<
:

ð7Þ

Once this initial solution S0 has been found, the sensor can
develop a search space around it, which will be used by opti-
mization to find a better solution to the positioning of the
sensor.

4.3 Search space

It is true that in the literature, several methods exist for the
construction of a box containing the position of an unknown
sensor [21]. But we have chosen to use a simple and not com-
putationally expensive process for the development of this zone
representing the search space. Constraints analysis is the name
we have given to our process of delimiting an area that may
contain the position of an unknown sensor. It is inspired by
interval analysis, which is a technique that has proven itself in
the processing of state estimation problems (localization) [29].
Delimitation consists in analyzing the graphic zone of the sen-
sor and defining constraints to represent it.

An unknown sensor is fixed and receives all the positions
broadcast by anchors being in the same place. This assumes
that each time an anchor position was received, it was within
the transmission range of the transmitting anchor. Then, the
intersection zone of the transmission fields of anchors whose
diffused positions have been received by this unknown sensor,
represents the constraint zone of the sensor as illustrated in
Fig. 3.

A1;A2 and A3 are the three non-collinear anchor positions
that the sensor has received and selected. Rcom designates the
communication radius of anchors. The points In; 1 � n � 6,
are intersection points of the supposed different communica-
tion fields of anchors having emitted positions A1;A2 and A3.
Let:

& I1 and I2 intersection points of circles with centers A1 and
A2;

& I3 and I4 intersection points of circles with centers A1 and
A3;

& I5 and I6 intersection points of circles with centers A2 and
A3.
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The constraint zone Z Cð Þ of sensor C represents the inter-
section zone of the three circles formed by each reference
point. This area is delimited by three intersection points, as
we can see in Fig. 3. To know which points to retain among
the six intersection points, we calculate the distance separating
intersection points of two circles from the center of the third
circle and we retain the closest point. According to the exam-
ple in Fig. 3, we calculate and compare the distances:

& A3I1½ � and A3I2½ � and we retain I1
& A2I3½ � and A2I4½ � and we retain I3

& A1I4½ � and A1I6½ � and we retain I5

Note that this zone is made up of three arcs of a circle. To
represent it, we start from system 8.

ðx� xa1Þ2 þ ðy� ya1Þ2 � R2
com

ðx� xa2Þ2 þ ðy� ya2Þ2 � R2
com

ðx� xa3Þ2 þ ðy� ya3Þ2 � R2
com

8<
: ð8Þ

Whereðxa1; ya1Þare the coordinates of AnchorA1;ðxa2; ya2Þ
are the coordinates of AnchorA2; ðxa3; ya3Þ are the coordinates
of Anchor A3 ; Rcom designates the communication radius of
anchors.

From system 8, we obtain relations of system 9.

f 1 xð Þ ¼ ya1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
com � ðx� xa1Þ2

q

f 2 xð Þv ¼ ya1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
com � ðx� xa1Þ2

q

g1 xð Þ ¼ ya2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
com � ðx� xa2Þ2

q

g2 xð Þ ¼ ya2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
com � ðx� xa2Þ2

q

h1 xð Þ ¼ ya3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
com � ðx� xa3Þ2

q

h2 xð Þ ¼ ; ya3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
com � ðx� xa3Þ2

q
XMIN ¼ minðxI1 ; xI3 ; xI5Þ
XMAX ¼ maxðxI1 ; xI3 ; xI5Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð9Þ

The set Z Cð Þ representing the constraint zone of the sensor
C is defined by Eq. 10.

Fig. 1 Architecture of FPSOTS
localization method

Fig. 2 Initial solution by trilateration
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Z Cð Þ ¼ p
x
y

� �
jXMIN � x � XMAX and

f 1 xð Þ � y � f 2 xð Þ
g1 xð Þ � y � g2 xð Þ
h1 xð Þ � y � h2 xð Þ

8<
:

9=
;

8<
:

9=
;

ð10Þ

Let us pose the following system 11:

YMIN ¼ maxðf 1ðxÞ; g1ðxÞ; h1ðxÞÞ
YMAX ¼ minðf 2ðxÞ; g2ðxÞ; h2ðxÞÞ

�
ð11Þ

The final search space for a sensor localization is defined
by system 12.

Z Cð Þ ¼ p
x
y

� �
jXMIN � x � XMAX and YMIN � y � YMAX

� �

ð12Þ

A generated candidate solution is then valid only if it be-
longs to Z Cð Þ. This process will eliminate inconsistent solu-
tions during the optimization process.

4.4 FPSOTS optimization: PSO + tabu search

We denote by NBParticles the number of particles generated
in the search space Z Cð Þ. All the particles are part of the same
swarm, and each particle represents a potential solution to the
problem. FPSOTS method being an optimization method, the

fitness function used to evaluate the quality of candidate so-
lutions is defined by Eq. 13.

f ðx; yÞ ¼ 1

M
�
XM
i¼0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x2i þ ðy� yiÞ2

q
� DiÞ ð13Þ

ðx; yÞ are the estimated coordinates of the non-localized
sensor; M the number of anchor signals received within the
transmission range of the non-localized sensor; ðxi; yiÞ the
coordinates of anchor i. Di represents the estimated distance
between anchor i and sensor.

At the start of PSO, each particle has zero speed and con-
siders its best local neighbor to be its current position. At each
iteration of optimization, the particle searches for its new best
local neighborPbest and updates its speed using Eqs. 1, 2 and 3
from Section 2. To get this best local neighbor Pbest , particle
performs a form of tabu search in its neighborhood.

4.4.1 Tabu search for the best local neighbor of a particle

Algorithm 2 presents how the best neighbor of a particle is
obtained by tabu search. Tabu list is common to all particles in
the swarm and has a defined capacity. It stores old visited
positions of particles. We denote by the size of a particle
neighborhood i.e. its number of possible neighbors or more
precisely number of search iterations. Algorithm uses as input
a particle, the size of its neighborhood, tabu list and the best

Fig. 3 Constraint zone of a sensor
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global solution. Our form of tabu algorithm allows acceptance
of a tabu solution if it improves the current solution.

During the search for its best local neighbor, a particle may
explore a better solution than the current global solution; i.e. a
better quality solution than the quality of the component Sbest
(the component that designates the best overall solution). In
this case, the algorithm updates particle position, its compo-
nentPbest and the global componentSbest by this position found
before continuing the search. This process will help algorithm
to converge faster towards an optimal solution.

Our form of tabu search algorithm gives each particle
chance to improve the overall performance of PSO as well
as its performance, if it explores a better solution than the
current best overall solution. Therefore, the optimization

process will quickly find an optimal solution to sensor
localization.

4.4.2 Limit check in particle evolution

As mentioned in Section 2 among our motivations, the PSO
algorithm in its traditional form accepts any new particle po-
sition, even out of search space. But in the PSO version pro-
posed in this work, the algorithm checks that the new posi-
tions belong to the search space.

If a new position is outside the search space and is also of
better quality than the current position, then it is accepted as a
new position, because it can allow the discovery of a better
position. But in the case where the new position is outside the
search space and is of lower quality than the best position of
the particle, this new position is brought back into the search
space according to Eq. 14. PminðXMIN ; YMIN Þ and Pmax�
ðXMAX ; YMAX Þ are two points representing the bounds of
search space.XMIN ; YMIN ;XMAX ; YMAX are defined in systems
9 and 11. Limit check is done on each dimension of position
coordinates.

xtþ1 pð Þ ¼ ðxtðpÞ þ PmaxÞ=2 If xtþ1ðpÞ < Pmin
ðxtðpÞ þ PminÞ=2 If xtþ1ðpÞ > Pmax

�
ð14Þ

Where t denotes the current iteration.

4.4.3 Performance check in particle evolution

PSO algorithm in its traditional form accepts any new po-
sition, even one that does not improve the quality of a
particle. In the PSO version proposed in this work, the
algorithm accepts only the best positions after having
checked and adjusted their membership in the search space
using system 15.

xtþ1 pð Þ ¼ xtþ1 pð Þ If f xtþ1ð ðpÞÞ < f xtð Þ
xt pð Þ If f xtþ1ð ðpÞÞ > f xtð Þ

�
ð15Þ

Where f is the fitness function allowing to evaluate the
performance of each particle defined by Eq. 13; t denotes
the current iteration.

4.4.4 Final algorithm of FPSOTS

The final process of FPSOTS localization is described by
algorithm 3. The algorithm outputs the best position extracted
as the sensor localization. The steps of this algorithm are as
follows.

1. Generate particles around S0 in Z Cð Þ
2. Evaluate each particle
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3. Determine Sbest: position of the best particle
4. By tabu search of algorithm 2, find the best local neigh-

bor Pbest of each particle P
5. Calculate the new velocity of the particle
6. Calculate the new position named X
7. Adjust X if X=2Z Cð Þ and f Xð Þ > f Pð Þ according to

system 14
8. Update position of P with X according to system 15
9. Start over at step 2 until the number of iterations is

reached
10. Return Sbest

5 Simulations and interpretation of results

We have chosen as simulation environment, the CupCarbon
environment. CupCarbon is a recent WSN simulator, devel-
oped by Mehdi and al. in 2014 [30]. Its purpose is to design,
visualize and validate the algorithms proposed for WSNs. Its

simulation environment allows the design of mobility scenar-
ios. The CupCarbon platform is developed with the following
main objectives [31]:

& study the deployment of WSNs by considering the mobil-
ity and availability of the radio spectrum;

& simulate and analyze the performance of a proposedWSN
in a 2D/3D environment;

& study the feasibility and reliability of communication in
the network;

& detect areas of high radio interference in the network;
& accurately simulate radio propagation in an urban environ-

ment in real-time;
& better visualize simulation results to debug and validate a

developed algorithm.

All these elements motivated our choice of this environ-
ment for our simulations. But even more, our choice was
favored by the programming language of this environment.
Indeed, CupCarbon is developed in Java and can be easily
integrated and used in a Java application; the Java lan-
guage being the one chosen for our implementations.

The performance in terms of localization accuracy (lo-
calization error) of FPSOTS was evaluated in comparison
with approaches HPSOVNS [18], NS-IPSO [21], ECS-NL
[25] and GTOA-NL [22] using the parameters of anchor
density, standard deviation of signals due to noise, trans-
mission range as well as the evaluation of the fitness
function.

The localization error of a sensorc represents the difference
between its estimated position ðxe; yeÞ and its real position ðxr
; yrÞ. The average network localization error for N sensors is
evaluated by Eq. 16.

� ¼ 1

N

XN

i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxei � xriÞ2 þ ðyei � yriÞ2

q
ð16Þ

Each result presented is the sum of the results of 5 simula-
tion rounds. To carry out these simulations, we used the fol-
lowing general parameters of Table 1.

Specifically, Table 2 presents the parameters used to sim-
ulate each method.

Table 1 General
simulation parameters Parameters Values

Environment size 700×700

Number of anchors 1 to 10

Number of sensors 20

Standard deviation (σ ) 0.1 to 1

Transmission range (RCom ) 10 to 40

Population size 50

Maximum iteration count 100
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For the choice of parameters in Tables 1 and 2, we relied
heavily on data from references [18, 21, 22, 25, 32].

5.1 Localization accuracy according to anchors
number

Table 3; Fig. 4 present, according to anchors number, a com-
parison of 5 samples of different algorithms. We can observe
on data of these comparisons, the capacity of the FPSOTS
method to provide a good localization whatever the number
of anchors used. In fact, the position estimation error obtained
by FPSOTS is much lower than those obtained by others
algorithms. We believe this is due to our improved version
of PSO and our form of tabu search algorithm, which allows a
particle to improve quickly and easily while also improving
the overall performance of the optimization process. The
different simulation runs were carried out with σ ¼ 1
and RCom ¼ 25.

5.2 Localization accuracy according to environmental
noise

As RSSI measurements are often affected by environmen-
tal noise, we assess in our way the robustness of algorithms
studied according to various standard deviation values of
sensor signals. Results obtained, presented in Table 4;
Fig. 5, testify to the robustness of FPSOTS with respect
to environmental noise compared to other algorithms. The
simulations of this category were made with 6 anchors and
RCom ¼ 25.

It can be seen that the FPSOTS method considerably re-
duces position estimation errors obtained by other methods.
This allows us to validate the operating mode efficiency of
FPSOTS in minimizing the position estimation error in pres-
ence of noise.

5.3 Localization accuracy according to the
transmission range

In principle, when the communications range is great, local-
ization is more precise, because sensors are well covered by
anchor signals. They thereby receive a lot of information for

the adjustment of their localization estimation function. We
then evaluate the impact of transmission range on localization
error in FPSOTS. Results of the evaluation carried out with 6
anchors and a standard deviation σ ¼ 1 are presented in

Table 2 Specific simulation
parameters Algorithm Parameters

HPSOVNS NS=1, ci=0.729, cc=1.494, cs=1.494,NIVNS = 50,KVNS = 5

NS-IPSO NS=5, ci=0.729, cc=1.494, cs=1.494, cg=1.494

ECS-NL � = [0.9-1.0], Pa= [0.05–0.25]

GTOA-NL TF=1

FPSOTS NS=1, ci=0.729, cc=1.494, cs=1.494,NITS = 50

NS: number of swarms; NI: number of iterations; TF: teaching factor; Pa: probability of mutation

Table 3 Average localization error values vs. number of anchors

Anchor
number

Round HPSOVNS NS-IPSO ECS-NL GTOA FPSOTS

1 1 2,823 2,837 2,483 2,28 1,815

2 2,3 1,991 2,308 1,82 1,601

3 2,674 1,897 1,918 1,728 1,691

4 1,901 2,439 1,981 1,908 1,764

5 2,815 2,855 2,801 2,123 1,897

Average 2,5026 2,4038 2,2982 1,9718 1,7536

3 1 1,955 2,262 2,955 1,852 1,611

2 2,141 1,878 1,888 1,855 1,603

3 1,877 1,828 1,903 1,911 1,728

4 1,812 1,912 1,937 1,872 1,718

5 1,898 1,894 1,814 1,798 1,649

Average 1,9366 1,9548 2,0994 1,8576 1,6618

5 1 1,811 1,711 1,831 1,726 1,581

2 1,645 1,645 1,648 1,605 1,345

3 1,629 1,695 1,806 1,555 1,416

4 1,639 1,635 1,744 1,395 1,515

5 1,733 1,603 1,768 1,533 1,398

Average 1,6914 1,6578 1,7594 1,5628 1,451

7 1 1,329 1,297 1,538 1,297 1,191

2 1,596 1,296 1,347 1,226 1,111

3 1,357 1,426 1,517 1,327 1,08

4 1,392 1,286 1,506 1,266 0,973

5 1,565 1,357 1,385 1,257 1,107

Average 1,4478 1,3324 1,4586 1,2746 1,0924

10 1 1,383 0,992 1,034 0,983 0,796

2 0,929 0,986 0,983 0,908 0,625

3 1,098 0,985 1,982 1,098 0,898

4 0,938 0,977 0,952 0,777 0,687

5 0,987 0,951 0,957 0,878 0,638

Average 1,067 0,9782 1,1816 0,9288 0,7288

It is the average of the 5 localization errors obtained by each approach, for
each number of anchors used.
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Table 5; Fig. 6. Note that the proposed FPSOTS approach is
more precise than the other algorithms regardless of transmis-
sion range.

5.4 Evolution of fitness function

Graphs in Fig. 7 present samples of the evolution of fitness
function of different algorithms studied. In general, we can
note that FPSOTS converges quickly towards an optimal so-
lution compared to other algorithms. This rapid convergence
is due not only to the limit and performance checks introduced
in PSO, but also to the form of tabu search used, which gives
particles the chance to visit a better solution to the problem
very quickly.

5.5 Discussion

Table 6 globally presents, a summary of the localization errors
obtained by existing approaches and the proposed FPSOTS
approach. In Table 6, we note that whatever the anchor’s
number in the network, the error in distances measurement
and the node’s transmission range in the network, the
FPSOTS algorithm always provides a more precise localiza-
tion than HPSOVNS, NS-IPSO, ECS-NL, and GTOA algo-
rithms which are fairly good and recent localization algo-
rithms in the literature.

From these results, we can therefore affirm that, allowing
each particle of a PSO process to determine its best local
neighbor by a tabu search method, allows the algorithm to
achieve an efficient result. Moreover, equipping the particles
with limit and performance checks allows them to evolve
efficiently towards a promising result.

Thus, the FPSOTS algorithm is an efficient search algo-
rithm for solving the indoor localization problem in a WSN.
But we believe that FPSOTS can also be used to solve other
problems in WSN such as the coverage problem or finding
optimal paths between nodes of a network.

As an example of using the FPSOTS method, we can
think of the location of mines on a battlefield. We can also
think of the location of fire risk areas in forests or the loca-
tion of survivors of a natural disaster. In these different
examples, a group of sensors can be sent on a mission in
the environment in question. In this group of sensors, very
few can be equipped with GPS to limit the negative impact
of GPS on the network. Other sensors without GPS will be
able to use our indoor location method to determine their
location. Indeed, for a sensor to locate a mine, a fire risk
area, or a survivor of a disaster, it must know its location
itself. In such application examples, the indoor location
method usedmust be very precise on the different calculated
positions. And we have shown that FPSOTS is a method
that provides much more accurate localization than the
existing methods studied.

6 Conclusions

In this paper, a new method to localize sensors in a WSN is
proposed and evaluated. The proposed method named
FPSOTS is a range-based localization approach using opti-
mization techniques for estimating the localization of sen-
sors. FPSOTS improves the PSO algorithm by introducing
a form of tabu search for the determination of the best local
neighbor of a particle, as well as limit and performance

Fig. 4 Localization error vs.
number of anchors
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checks in the evolution of particles. The implemented tabu
search allowed particles to quickly discover a better solution
during the optimization process. In FPSOTS, the initial so-
lution is determined by trilateration and search space is con-
structed by a simple process of constraints analysis. The final
solution to sensor localization is subsequently determinedby
our optimization processwhichmergesPSOand tabu search.
This tabu search, coupledwith limit and performance checks
introduced in PSO, made it possible to efficiently determine
the location of a sensor. The accuracy of FPSOTS was eval-
uated in simulation based on anchor density, noise effect and
anchor transmission range. Overall, evaluation of localiza-
tion error vs. anchors density of network demonstrates that
FPSOTS improves HPSOVNS, NS-IPSO, ECS-NL and
GTOA by approximately 39%, 33%, 42% and 19% respec-
tively. Evaluation of the impact of signal standard deviation

on localization accuracy showed that FPSOTS improves
HPSOVNS, NS-IPSO, ECS-NL and GTOA approaches by
approximately 24%, 23%, 27% and 18%. According to the
analysis of the impact of nodes transmission range on the
determination of sensors location, the proposed FPSOTS ap-
proach improved HPSOVNS, NS-IPSO, ECS-NL and
GTOA methods by about 30%, 28%, 25% and 21%.
Analyzes of results show the efficiency of FPSOTS as an
optimization algorithm for solving indoor localization prob-
lems in WSN with a fast convergence towards an optimal
solution. In future directions for this work, we can study the
efficiency of the algorithm if the tabu searchwas replaced by
apopulationmetaheuristic. In this case, itwill benecessary to
evolve not only localization accuracy, but also localization
time and energy consumption of the sensors. In addition, we
want to ver i fy the eff ic iency of FPSOTS in rea l

Table 4 Average localization
error vs. standard deviation Standard deviation Round HPSOVNS NS-IPSO ECS-NL GTOA FPSOTS

0,1 1 0,316 0,301 0,481 0,28 0,215

2 0,33 0,311 0,38 0,32 0,301

3 0,41 0,395 0,418 0,28 0,261

4 0,401 0,39 0,433 0,38 0,24

5 0,315 0,325 0,41 0,33 0,307

Average 0,3544 0,3444 0,4244 0,318 0,2648

0,3 1 0,555 0,52 0,655 0,52 0,5

2 0,541 0,55 0,615 0,455 0,403

3 0,6 0,48 0,603 0,411 0,38

4 0,62 0,69 0,67 0,572 0,418

5 0,67 0,54 0,691 0,498 0,38

Average 0,5972 0,556 0,6468 0,4912 0,4162

0,5 1 0,78 0,699 0,801 0,7 0,468

2 0,765 0,689 0,864 0,654 0,505

3 0,777 0,748 0,806 0,755 0,417

4 0,699 0,752 0,791 0,712 0,494

5 0,763 0,702 0,808 0,622 0,499

Average 0,7568 0,718 0,814 0,6886 0,4766

0,7 1 0,793 0,713 0,792 0,633 0,632

2 0,841 0,827 0,91 0,79 0,579

3 0,769 0,746 0,873 0,686 0,679

4 0,892 0,879 0,889 0,734 0,614

5 0,799 0,801 0,878 0,792 0,658

Average 0,8188 0,7932 0,8684 0,727 0,6324

1 1 0,952 0,959 1,334 0,886 0,779

2 0,979 0,911 0,999 0,951 0,788

3 0,963 0,911 1,162 0,847 0,725

4 1,222 0,927 0,997 0,839 0,803

5 0,979 1,001 0,977 0,847 0,798

Average 1,019 0,9418 1,0938 0,874 0,7786

It is the average of the 5 localization errors obtained by each approach, for each value of standard deviation.
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Table 5 Localization error values
vs. transmission range Transmission range Round HPSOVNS NS-

IPSO
ECS-
NL

GTOA FPSOTS

10 1 1,576 1,326 1,576 1,467 1,315

2 1,607 1,633 1,617 1,611 1,497

3 1,654 1,645 1,65 1,599 1,491

4 1,672 1,661 1,675 1,642 1,464

5 1,666 1,632 1,671 1,599 1,497

Average 1,635 1,5794 1,6378 1,5836 1,4528

20 1 1,581 1,549 1,582 1,546 1,321

2 1,458 1,346 1,448 1,337 1,323

3 1,574 1,539 1,57 1,512 1,258

4 1,477 1,396 1,427 1,326 1,321

5 1,365 1,436 1,455 1,377 1,363

Average 1,491 1,4532 1,4964 1,4196 1,3172

30 1 1,348 1,266 1,268 1,249 1,151

2 1,281 1,206 1,258 1,203 1,057

3 1,271 1,177 1,271 1,154 1,129

4 1,362 1,242 1,302 1,238 1,12

5 1,386 1,251 1,325 1,247 1,047

Average 1,3296 1,2284 1,2848 1,2182 1,1008

40 1 1,198 1,024 1,051 1,025 0,851

2 1,215 0,96 1,147 1,026 0,855

3 0,998 1,026 1,107 0,927 0,719

4 1,117 1,206 1,206 0,946 0,811

5 0,996 0,957 0,999 0,937 0,799

Average 1,1048 1,0346 1,102 0,9722 0,807

It is the average of the 5 localization errors obtained by each approach, for each value of node transmission range.

Fig. 5 Localization error vs.
standard deviation
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Fig. 6 Localization error vs.
transmission range

a Sample 1 b Sample 2 

c Sample 3 d Sample 4 

Fig. 7 Evolution of fitness function. a Sample 1. b Sample 2. c Sample 3. d Sample 4
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experimentation on a WSN and study the introduction of an
early stop of the optimization process, when no change has
been observed for a certain time.

Data availability Not applicable.

Code availability Not applicable.
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